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The genetics of eye disorders in the dog
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Abstract

Inherited forms of eye disease are arguably the best described and best characterized of all inherited diseases in
the dog, at both the clinical and molecular level and at the time of writing 29 different mutations have been
documented in the scientific literature that are associated with an inherited ocular disorder in the dog. The dog has
already played an important role in the identification of genes that are important for ocular development and
function as well as emerging therapies for inherited blindness in humans. Similarities in disease phenotype and eye
structure and function between dog and man, together with the increasingly sophisticated genetic tools that are
available for the dog, mean that the dog is likely to play an ever increasing role in both our understanding of the
normal functioning of the eye and in our ability to treat inherited eye disorders. This review summarises the
mutations that have been associated with inherited eye disorders in the dog.
Lay summary
Inherited forms of eye disease are arguably the best de-
scribed and best characterized of all inherited diseases in
the dog, at both the clinical and molecular level and at
the time of writing 29 different mutations have been
documented in the scientific literature that are associ-
ated with an inherited ocular disorder in the dog. The
dog has already played an important role in the identi-
fication of genes that are important for ocular deve-
lopment and function as well as emerging therapies for
inherited blindness in humans. Similarities in disease
phenotype and eye structure and function between dog
and man, together with the increasingly sophisticated
genetic tools that are available for the dog, mean that
the dog is likely to play an ever increasing role in both
our understanding of the normal functioning of the eye
and in our ability to treat inherited eye disorders. This
review summarises the mutations that have been associ-
ated with inherited eye disorders in the dog.
Introduction
Inherited forms of eye disease are arguably the best de-
scribed and best characterized of all inherited diseases in
the dog, at both the clinical and molecular level. At the
time of writing 29 different mutations have been docu-
mented in the scientific literature that are associated
with an inherited ocular disorder in the dog (Table 1).
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Several more conditions have been described very well
at the genetic and clinical level although their causal
mutations remain elusive; however the genetic basis of
many of these will undoubtedly be unraveled over the
coming years, thanks to the increasingly sophisticated
genetic resources that are now available for the dog.
Why have so many inherited eye disorders been de-

scribed in the dog? A principal reason is that the eye is
very accessible, and much of it can be examined in detail
using non-invasive techniques, making it relatively easy to
detect abnormalities, even if they do not impair vision sig-
nificantly. There are clinical screening schemes in place in
many countries that offer dog breeders the opportunity to
screen their dogs, ideally before they are bred from,
for disorders known to be inherited in their breed. One
such scheme is the British Veterinary Association/Kennel
Club/International Sheep Dog Society Eye Scheme that
operates in the United Kingdom (http://www.bva.co.uk/
canine_health_schemes/Eye_Scheme.aspx). This scheme
covers 11 inherited eye disorders in over 50 breeds of
dog. The European College of Veterinary Ophthalmolo-
gists (ECVO) Scheme (http://www.ecvo.org/) is in use in
seven European countries, and individual ECVO Diplo-
mates work in accordance with the scheme in other coun-
tries to control presumed inherited diseases of the eye and
its adnexa. In the United States the Orthopedic Founda-
tion for Animals (OFA) and the American College of Vet-
erinary Ophthalmologists (ACVO) maintain a joint Eye
Certification Registry (ECR). OFA Eye Certification Regis-
try exams are ophthalmic examinations, performed by
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Table 1 Genes associated with inherited eye disorders in the domestic dog

Disease Locus or
abbreviation

Gene Breed Reference

Cone-rod dystrophy CRD3 ADAM9 Glen of Imaal terrier [53,54]

Primary open angle glaucoma POAG ADAMTS10 Beagle [147]

Primary lens luxation PLL ADAMTS17 Multiple, mainly terrier breeds [129,132]

Rod cone degeneration RCD4 C2orf71 Gordon Setter, Irish Setter, Tibetan Terrier [30]

Generalised progressive retinal atrophy gPRA CCDC66 Schappendoes [28]

Progressive retinal atrophy PRA CNGB1 Papillon [15,17]

Cone degeneration CD CNGB3 Alaskan malamute [68]

Cone degeneration CD CNGB3 German shorthaired pointer [69]

Dwarfism with retinal dysplasia (oculoskeletal
dysplasia)

DRD2 (OSD2) COL9A2 Samoyed [90]

Dwarfism with retinal dysplasia (oculoskeletal
dysplasia)

DRD1 (OSD1) COL9A3 Labrador retriever [90]

Hereditary cataract HC, EHC HSF4 Staffordshire bull terrier, Boston terrier, French
bulldog

[103]

Hereditary cataract HC HSF4 Australian Shepherd [107]

Collie eye anomaly CEA NHEJ1 Collies [91]

Cone-rod dystrophy NPHP4 Standard wirehaired dachshund [49]

Photoreceptor dysplasia PD PDC Miniature schnauzer [13]

Rod cone dysplasia RCD1 PDE6B Irish setter [2]

Rod cone dysplasia RCD1 PDE6B Sloughi [3]

Rod cone dysplasia RCD3 PDE6A Cardigan Welsh corgi [4]

Progressive rod-cone degeneration PRCD PRCD Multiple breeds [23]

Rod cone dysplasia RCD2 RD3 Collie [7]

Autosomal dominant progressive retinal atrophy ADPRA RHO English mastiff [24]

Congenital stationary night blindness CSNB RPE65 Briard [58,59]

X-linked progressive retinal atrophy XLPRA2 RPGR Mixed breed dogs [18]

X-linked progressive retinal atrophy XLPRA1 RPGR Siberian Husky, Samoyed [18]

Cone-rod dystrophy CORD1 (CRD4) RPGRIP Dachshunds [38]

Early retinal degeneration ERD STK38L Norwegian elkhound [11]

Canine multifocal retinopathy CMR1 VMD2/
BEST1

Great Pyrenees, English Mastiff, and Bullmastiff
dogs

[74]

Canine multifocal retinopathy CMR2 VMD2/
BEST1

Coton de Tulears [74]

Canine multifocal retinopathy CMR3 VMD2/
BEST1

Lapponian Herder [75]
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ACVO Diplomates, to assess dogs for the presence or ab-
sence of observable hereditary ocular disease. Dogs with
normal exam results receive OFA eye certification num-
bers valid for one year. The three schemes listed above,
and other comparable schemes in place around the world,
differ incrementally from one another in the precise ways
in which they are operated, but they all serve to document
and register dogs affected with, and free from, inherited
eye diseases. Each dog that is clinically examined under
any of these schemes receives a certificate on which the
results of the examination are recorded and the findings
are also recorded in the relevant registry/database, thus
providing a wealth of data regarding the clinical character-
istics and incidence of inherited eye disorders in different
breeds of domestic dog.

Review
Diseases of the retina
Inherited forms of retinal disease are among the best
clinically and genetically characterized genetic condi-
tions in the dog. Retinal disorders can be categorized in
various ways and the way in which they have been
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described in this review, which is summarized in Figure 1,
is certainly not the only way to partition them. Most
methods of classification will, however, broadly take into
account the typical stage of development or age of onset
of the disease, the cells that are typically affected and
whether the disease becomes progressively severe during
the dog’s lifetime or whether it is more or less stationary.
Here the retinal disorders have been broadly divided into
two main categories; the degenerative conditions where
the retina develops normally and then degenerates during
the dog’s lifetime and the developmental or dysplastic dis-
eases in which the retina develops abnormally. It should
be stressed, however, that categorising all retinal disease
into these two broad forms is inevitably an over simplica-
tion in some cases, and that a minority of retinal diseases
have both dysplastic and degenerative characteristics.

Degenerative retinal disorders
The majority of retinal diseases that have been described
in the dog are degenerative conditions. Some degenerative
conditions are characterized by an inevitable increase in
severity over time, invariably culminating in complete loss
of vision, whereas other conditions are characterized by a
Figure 1 Categorization of canine retinal disorders. Different mutations
conditions.
pathology that does not deteriorate significantly through-
out life. These two broad clinical categories of disease are
described below under the headings progressive and sta-
tionary respectively.

Progressive retinal disorders
Progressive retinal atrophy (PRA) and cone-rod dys-
trophy (CRD) are collective terms for two broad forms
of progressive, bilateral degenerative diseases that affect
the retinal photoreceptor cells.

Progressive retinal atrophy
In general, PRAs are characterized by initial loss of rod
photoreceptor function followed by that of the cones
and for this reason night blindness is the first significant
clinical sign for most dogs affected with PRA. Visual im-
pairment in bright light invariably follows, accompanied
by characteristic changes to the fundus that are visible
upon ophthalmoscopic investigation. Typical changes in-
clude attenuation of the blood vessels of the retina, in-
creased reflectivity of the tapetal layer as a result of
retinal thinning and atrophy of the optic disc. In many
dogs secondary cataracts develop, which might become
in the genes marked with an asterix account for genetically distinct
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extensive enough to obscure the retina and require the
use of electroretinography (ERG) for diagnosis. Whereas
most dogs show the same ophthalmoscopic abnormal-
ities the age at which these abnormalities develop varies
considerably between breeds and genetically different
forms of PRA can be broadly divided into early- and
late-onset forms.

Early-onset forms of PRA Early onset forms of the dis-
ease are typically expressed between 2 and 6 weeks of
age, the period of postnatal retinal differentiation in
dogs, and are characterized by the abnormal develop-
ment of the rod and cone photoreceptors. Four well-
characterized, genetically distinct forms of autosomal
recessive, early-onset retinal degeneration are rod-cone
dysplasia type 1 (RCD1), rod-cone dysplasia type 2 (RCD2),
rod-cone dysplasia type 3 (RCD3) and early retinal degen-
eration (ERD) [1]. RCD1, which affects Irish Setters from
approximately 25 days after birth and culminates at about
1 year when the population of rods and cones is depleted,
is caused by a nonsense mutation at codon 807 of the gene
encoding the beta subunit of cGMP phosphodiesterase
(PDE6B), an essential member of the phototransduction
pathway [2]. This mutation was the first responsible for
any form of PRA to be identified in the dog. An 8 base
pair (bp) insertion after codon 816 in the same gene
causes a genetically distinct form of PRA in the Sloughi
which has a later age of onset than the Irish Setter form,
with the first signs of visual impairment not being noticed
until dogs are between 2 and 3 years of age [3]. PRA in
the Cardigan Welsh corgi, termed rod-cone dysplasia 3
(RCD3), is also caused by a mutation in a subunit of
cGMP phosphodiesterase, this time the alpha subunit,
which results in a disease with a comparable age of onset
to RCD1 [4]. In RCD3 affected dogs normal rod-mediated
ERG responses fail to develop, photoreceptor outer seg-
ments do not reach maturity and rod cells are lost by
apoptosis [5]. The genetically distinct RCD2 segregates in
rough and smooth collies [6] and is caused by an insertion
in RD3 that results in a stretch of altered amino acids and
an extended reading frame [7]. Mutations in RD3 have
been associated with retinal degeneration in both humans
and mice [8].
Whereas the early onset forms of PRA, RCD1 and

RCD3, described above, were among the first canine
inherited diseases to be characterized at the molecular
level, the mutation responsible for the similarly early on-
set condition ERD (early-onset degeneration) has only
recently been identified. This condition, which was ori-
ginally described in Norwegian Elkhounds [9], and was
first mapped more than 10 years ago [10] is caused by an
exonic SINE insertion in the gene STK38L [11]. Although
known to have neuronal cell functions STK38L has not
previously been associated with abnormal photoreceptor
function; being associated with such a disease in dogs
establishes this gene as a potential candidate for similar
diseases in other species, including man.
A different form of early-onset PRA affects Miniature

Schnauzers. Histologically this disease is evident from a
very early age, when the normal retina is nearing the
end of postnatal differentiation, and as it affects both
rods and cones it is termed photoreceptor dysplasia
(PD) [12]. This disease was originally associated with a
missense mutation in phosducin (PDC) [13]. However
additional research has since led to the complete exclu-
sion of phosducin and to the identification of the gene
and mutation that do in fact cause this disease, that is
also known as Type A PRA [14]. Evidence suggests that
Type A PRA is in fact a rare form of PRA in the Mini-
ature Schnauzer and that other, genetically distinct
forms of PRA segregate within the breed, for which the
mutations have yet to be identified [14].
Recently a complex mutation, consisting of the com-

bination of a one basepair deletion and a 6 basepair in-
sertion was identified in exon 26 of CNGB1 in Papillons
with an early onset PRA. The mutation leads to a frame-
shift and a premature stop codon. Affected dogs demon-
strated an early lack of rod function followed by a slow
retinal degeneration, a phenotype comparable to mice
and humans with CNGB1 mutations [15]. CNGB1 com-
bines with CNGA1 to form the rod cyclic nucleotide
gated channel. Previous studies have shown the re-
quirement of CNGB1 for normal targeting of CNGA1
to the rod outer segment [16] and indeed the authors
were able to demonstrate a lack of detectable CNGA1
protein in the rod outer segments of the affected Papil-
lons homozygous for the mutation [15]. The same muta-
tion was also described in Phalene dogs by Ahonen and
collegues [17].
The early onset forms of PRA described above are all

caused by mutations in autosomal genes. In contrast, a
mutation in the X-linked retinitis pigmentosa GTPase
regulator gene (RPGR) causes a very severe form of PRA,
known as XLPRA2, that has been described in mixed
breed dogs [18]. The XLPRA2 mutation is a 2 nucleotide
deletion that results in a frameshift that significantly
changes the predicted peptide sequence by leading to the
replacement of many acidic glutamic acid residues with
basic arginine residues and results in the premature ter-
mination of the protein 71 amino acids downstream. Un-
like the genetically distinct, relatively late onset XLPRA1
that is described below, the phenotype associated with the
frameshift mutation in XLPRA2 is very severe and mani-
fests during retinal development. ERG abnormalities are
evident by 5–6 weeks of age and cell degeneration is
present by 4 months, suggesting the mutant protein has a
toxic gain of function that severely compromises the early
stage of development of the photoreceptors.
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Late-onset forms of PRA The late-onset forms of PRA
are degenerations of photoreceptors that have completed
normal development. Whereas the genes implicated in
early-onset diseases are those necessary for the correct
development of photoreceptors the genes associated
with later-onset forms of disease are those necessary for
the long-term maintenance and function of these cells.
Progressive rod cone degeneration (PRCD) is a late-

onset form of PRA that affects multiple breeds. Prior to
characterization of this disease at the molecular level, ele-
gant interbreed crosses were undertaken to determine that
the phenotypically similar diseases that were segregating
in multiple breeds, including the miniature poodle, the
English and American cocker spaniels, the Labrador re-
triever, the Australian cattle dog, the Nova Scotia duck
tolling retriever and the Portugese water dog, were in fact
allelic [19,20]. However, when PRCD-affected dogs were
mated to PRA-affected dogs of the Border Collie, Basenji
and Italian greyhound breeds the progeny were normal,
indicating these breeds are affected by genetically distinct
forms of disease. The PRCD locus was mapped to a large
region on CFA9 in 1998 [21] before the canine genome
sequence was available and while tools with which to
investigate the canine genome were relatively unsophisti-
cated. However, the fact that a genetically identical disease
segregated in so many breeds proved to be invaluable as
it allowed the use of linkage disequilibrium mapping
across affected breeds to considerably narrow the PRCD-
associated region [22]. This led to the eventual identifica-
tion of a single nucleotide substitution in the second
codon of a previously unknown gene that is now known
to be the cause of PRCD in at least 18 different breeds
[23]. Intriguingly, an identical homozygous mutation was
identified in a human patient with recessive retinitis pig-
mentosa, the human equivalent of PRA, and established
the novel retinal gene, PRCD, as an important gene for the
maintenance of rod photoreceptor structure and function
across species.
A genetically distinct, late onset PRA has been de-

scribed in the English Mastiff. This disease is unique, to
date, among canine inherited retinopathies in that it is
inherited as an autosomal dominant disease, and is
caused by a single non-synonymous C → G transversion
at nucleotide 11 of rhodopsin (RHO) that changes Thr-4
to Arg (T4R). Dogs carrying the RHO mutation have
normal photoreceptor-specific ERG function at 3 to
6 months of age but by 13 months these responses are
abnormal. In young affected dogs retinal structure, rhod-
opsin expression and photoreceptor activation is normal;
disease progression is characterized by regions of initial
focal photoreceptor degeneration surrounded by areas of
structurally normal retina, which interestingly is very
similar to the phenotypes of humans with RHO muta-
tions [24]. A characteristic component of the phenotype
associated with T4R mutation is the dose–response rela-
tionship that has been demonstrated between light ex-
posure and the early alterations in retinal tissue that
occur in affected animals. Highest doses of light cause
rapid loss of neurons, reaching complete degeneration of
photoreceptors in < 4 weeks whereas the lowest doses of
light exposure enable mechanisms acting over a time
scale of weeks to months to repair the abnormal alter-
ations resulting from neuronal stress [25]. This muta-
tion, originally identified in the English mastiff, has also
been identified in PRA-affected bull mastiffs but has not
been identified in any other breeds to date [26].
A different late onset form of autosomal recessive gen-

eralised PRA has been described in Schapendoes where
the age of onset is typically between 2–5 years. During
the early stages of the disease affected dogs become
night-blind, lacking the ability to adjust their vision to
dim light; later their daytime vision also fails. This
process of complete photoreceptor degeneration takes
up to 2 years [27]. The causal mutation for the disease
has been shown to be a single bp insertion in exon 6 of
the recently discovered gene coiled-coil domain contain-
ing 66 (CCDC66) that leads to a stop codon. CCDC66 is
evolutionarily conserved in different vertebrate species
and exhibits a complex pattern of differential RNA spli-
cing resulting in various isoforms in the retina. Immuno-
histochemically, CCDC66 protein is detected mainly in
the inner segments of photoreceptors in mouse, dog,
and man although the retinas of affected Schapendoes
have been shown to lack CCDC66 protein [28].
A different mutation in RPGR from that associated

with XLPRA2 (described above) is responsible for a sex-
linked form of late-onset form PRA that was originally
described in the Siberian Husky [29] known as XLPRA1.
The mutation, which has also been identified in the
Samoyed, is a five nucleotide deletion that causes a
frameshift and an immediate premature stop; the trun-
cated protein lacks 230C-terminal amino acids which
causes a slight decrease in the isoelectric point [18]. The
photoreceptors of dogs that carry this mutation develop
normally, in contrast to those of dogs with XLPRA2,
and remain morphologically and functionally normal
until young adulthood, indicating the C-terminal of the
RPGR protein is not essential for functional and struc-
tural differentiation of rods and cones.
Recently a frameshift mutation was identified in C2orf71

that causes an autosomal recessive form of late onset PRA
in the Gordon and Irish Setters [30]. The average age of
onset in the dogs studied was approximately 10 years of
age. This variant was homozygous in 19 of 21 PRA cases
and was at a frequency of approximately 0.37 in the
Gordon Setter population. Approximately 10% of cases in
this study (2 of 21) were not associated with the C2orf71
mutation, indicating that PRA in this breed is genetically
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heterogeneous and caused by at least two mutations. This
variant is also present in a number of Irish Setter dogs
with PRA and has an estimated allele frequency of 0.26 in
the breed. The function of C2orf71 remains unknown, but
it is important for retinal development and function and
has previously been associated with autosomal recessive
retinitis pigmentosa in humans [31-34]. The form of PRA
associated with the mutation in C2orf71 has been termed
RCD4, for rod-cone degeneration 4, to distinguish it from
other forms of rod-cone degeneration [30]. The mutation
has also been found in Tibetan Terriers affected with PRA
(Mellersh and Downs, unpublished).
All the progressive, late-onset retinal disorders de-

scribed behave, more or less, as single-gene conditions,
caused by highly penetrant mutations. There is, however,
some evidence that environmental modifiers may play a
role in some of these diseases, causing phenotypic vari-
ation between and within breeds [20].

Cone-rod degenerations
Cone-rod dystrophies are disorders predominantly of
cones, with rods becoming affected later. CRDs have
ophthalmoscopic changes that are very similar to those
of PRA and detailed ERG studies that measure both
cone and rod-specific responses are required to distin-
guish between the two types of condition. For this rea-
son several disorders have been initially described as
PRAs to be later re-classified when extensive ERG inves-
tigations have been undertaken.
One such disorder is a form of retinal degeneration

that has been described in the Miniature longhaired
dachshund (MLHD). The disease was originally de-
scribed as an early-onset, autosomal recessive PRA with
all affected dogs within an inbred research colony dis-
playing ophthalmologic abnormalities that were detect-
able by ERG by six weeks of age and 25 weeks by
fundoscopy and becoming blind by the time they were
2 years of age [35]. A subsequent electroretinography
study identified an initial reduction of the cone photo-
receptor function which led to the condition being re-
classified as a cone-rod dystrophy (CRD), rather than a
rod-led PRA, and the disease was termed CORD1 for
cone-rod degeneration 1 [36]. The same condition has
also been referred to as CRD4 by others, for cone-rod
degeneration 4 [20]. Later findings by Lheriteau and co-
workers were also consistent with the condition being a
CRD [37]. Using the same colony of dogs CORD1 was
mapped to a large region on CFA15 and a mutation in
RPGRIP1 was identified that co-segregated completely
with CORD1 in the research colony [38]. The mutation
is a 44 bp insertion of a A29 tract flanked by a 15 bp du-
plication in exon 2 of the gene, that creates a frameshift
and introduces a premature stop codon early in exon 3.
Mutations in RPGRIP1 have been associated with Leber
congenital amaurosis (LCA) [39], retinitis pigmentosa
(RP) [40] and CRD [41] in humans, as well as inherited
retinal abnormalities in mice [42] which suggests it plays
an important role in visual function. The gene product’s
precise role is not currently understood but it is thought
to anchor regulatory complexes at the photoreceptor
connecting cilium, which acts as a bridge between the
inner and outer segments of photoreceptor cells [43] as
well as having functions in disk morphogenesis [42] and
in the structure of the ciliary axoneme [44]. RPGRIP1
also interacts with NPHP4, a gene that has been associated
with a genetically distinct form of early-onset CRD segre-
gating in the standard wire-haired variety of Dachshund
[45-49]. Within the research colony of MLHDs there was
complete correlation between the RPGRIP1 genotype and
phenotype of the dogs with respect to their CORD1
phenotype whereas in the pet MLHD population this was
not the case [50]. Outside of the colony there was consid-
erable variation in the age of onset of retinal degeneration
in dogs that were homozygous for the RPGRIP1 insertion
(termed RPGRIP1-mutant), which has also been identified
in other breeds, including the English springer spaniel
(ESS) and the Beagle. In a study of a small number of
RPGRIP1-mutant Beagles ERG cone responses were un-
detectable whereas rod responses were variable between
dogs, and between eyes of the same dog [50]. In the same
study all RPGRIP1-mutant MLHDs showed reduced cone
responses, even in the absence of ophthalmoscopic abnor-
malities, a finding that has also been corroborated by
Busse and co-workers [51]. Together these findings sug-
gest that additional mutations are involved which modify
the age of onset of ophthalmoscopic abnormalities asso-
ciated with the RPGRIP1 mutation. Because the original
research colony used was developed from a very small
number of dogs it is a real possibility that the colony was
fixed for these additional loci which, therefore, went un-
detected until the more outbred pet population was inves-
tigated. The mutation in NPHP4 described above, that
causes an early onset cone-rod dystrophy in standard
wire-haired dachshunds [49] was not present in the dachs-
hunds studies by Miyadera, enabling that mutation to be
excluded. A recent association study using RPGRIP1-
mutant MLHDs that had either early or late onset cord1
has indeed revealed a second locus that segregates with
early-onset disease [52], indicating early onset CRD in
MLHDs is more likely to be a digenic condition, and that
the RPGRIP1 insertion alone causes a late onset CRD,
although ERG abnormalities may be detected early in life.
Another form of canine cone-rod dystrophy to be

characterized at the molecular level is crd3, for cone-rod
dystrophy 3, that segregates in the Glen of Imaal terrier.
This disease becomes evident ophthalmoscopically in af-
fected dogs as young as 3 years of age, and progresses to
end-stage retinal degeneration over several years. Very
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recently the causal mutation has been identified by two
research groups almost simultaneously, as a large gen-
omic deletion of ADAM9 (A Disintegrin And Metallo-
protease domain, family member 9) that removes exons
15 and 16 of the ADAM9 transcript [53,54] and gener-
ates a premature stop codon that is predicted to result
in a truncated protein that lacks critical domains. This
finding established CRD3 as a true orthologue, and a po-
tentially useful model, of the similar human condition
CORD9 in which four distinct ADAM9 mutations have
been found [55].

Stationary retinal disorders
The forms of both PRA and CRD described above are
all inherited retinopathies that are characterized by in-
creasing severity and decreasing visual function over
time. Progressive retinal changes during the dog’s life-
time invariably lead to complete blindness.
The first non-progressive retinopathy to be well-

characterized was described in the Swedish Briard by
Narfstrom and colleagues [56] as stationary and congeni-
tal, resulting in it being termed congenital stationary night
blindness (CSNB). Since the initial report the disease has
also been described as having a progressive component
leading to it also being called a hereditary retinal dys-
trophy [57]. However CSNB and hereditary retinal dys-
trophy have since both been shown to be caused by a four
nucleotide deletion in exon 5 of the RPE65 gene, indicat-
ing they are genetically identical conditions [58,59]. RPE65
is involved in the conversion of all-trans-retinoids to
11-cis-retinoids and in its absence the visual cycle is inter-
rupted, resulting in a lack of visual pigment [60]. This ca-
nine disease has a very characteristic clinical phenotype;
affected dogs have profound visual impairment present
from at least 5–6 weeks of age, but remain ophthalmosco-
pically normal, at least for the first 3–4 years of life. Older
dogs may show subtle retinal abnormalities indicative of a
slowly progressive retinal degenerative process. Both cone
and rod mediated ERG responses are highly abnormal,
probably due to a combination of responses from rods
and possibly cones with very reduced sensitivity [58]. It
was the unique absence of visual function in dogs with
healthy rod photoreceptors that was observed in CSNB-
affected dogs that led to landmark studies in the field of
retinal gene therapy. Subretinal injections of adeno-
associated virus vectors expressing RPE65 resulted in res-
toration of rod photoreceptor function and improved
visual function, first in dogs [61,62] and subsequently in
humans [63-65].
Cone degeneration (CD) is also different from other

progressive disorders in that early-onset cone degener-
ation occurs in the absence of the subsequent rod de-
generation that characterizes cone-rod dystrophies. In
cd, which was originally described in Alaskan Malamutes
[66], affected puppies develop day-blindness and photo-
phobia between 8 and 12 weeks of age, when retinal
development is normally completed in dogs, although
these clinical signs only occur in bright light and the
dogs remain ophthalmoscopically normal throughout
their entire lives. Cone function starts to deteriorate by
the age of 6 – 12 weeks and is unrecordable in adult
dogs [67]. Rod photoreceptors, however, remain func-
tionally and structurally normal throughout the animal’s
life. A large genomic deletion that removes all exons of
CNGB3, the gene that encodes the β subunit of the cone
cyclic nucleotide-gated cation channel, has been identified
in CD-affected Alaskan Malamute-derived dogs, although
there is evidence that the condition might be genetically
heterogeneous in this breed as some dogs have been iden-
tified with clinical signs of day blindness that lack the
CNGB3 deletion [68]. A missense mutation in the same
gene has been detected in German Shorthaired Pointers
affected with a clinically identical allelic disorder [69].
These findings established CD as an orthologue of human
achromatopsia, a condition also known as rod monochro-
macy or total congenital colour blindness, that shares
many of its clinical features with CD and has also been as-
sociated with mutations in CNGB3 [70,71]. The potential
of these orthologues has recently been demonstrated by
the successful restoration of cone function and associated
photopic vision in both of the canine achromatopsia
models by gene replacement therapy [72].
Another inherited retinal disorder that is generally non-

progressive is canine multifocal retinopathy (CMR), a dis-
ease that has been recognized in several breeds, particularly
Great Pyrenees, Coton de Tulear, English Mastiff and
Bullmastiff [73,74]. Ophthalmoscopic changes are usually
evident in affected dogs before the age of around 4 months
and are characterized by multifocal areas of retinal eleva-
tion that contain subretinal accumulation of serous fluid.
Retinal elevations can remain static for several years,
whereas multifocal outer retinal atrophy is often seen in
older animals. Several different variants in the Bestrophin
gene (BEST1 (alias VMD2)) have been identified as likely
causal mutations for CMR in the dog. In Great Pyrenees,
English Mastiff, and bullmastiff dogs, a C73T mutation in
exon 2 causes a premature translation termination that
limits the open-reading frame to 25 codons, compared
with 580 codons in the wild-type mRNA (cmr1) and in
Coton de Tulears a G482A transition changes an evolu-
tionarily conserved glycine residue to aspartic acid (cmr2).
In Lapponian Herders two coding changes have been
described in CMR affected dogs; a deletion at nucleotide
position 1,388 (c1388del) and a substitution at nucleo-
tide position 1,466. The c1388del results in a frame shift
(Pro463fs) introducing a new stop codon at amino acid
490 and the G1466T substitution by itself leads to a con-
servative change in the amino acid sequence (Gly489Val),
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which is predicted to change the protein function with only
marginal significance. In combination with the C1388del,
however, the G1466T substitutions results in an additional
stop codon at amino acid position 489 within the shifted
reading frame (Gly489X). Since the mutations have only
been found in complete linkage disequilibrium, the authors
conclude that the combination of changes results in the
disease they refer to as cmr3 [75].
These mutations establish CMR as a novel animal

model for Best macular dystrophy (BMD) in humans, an
autosomal dominant, childhood retinal disease also
caused by mutations in the Bestrophin gene [76,77].

Developmental diseases
Retinal dysplasia is the term used to denote disorderly
proliferation and imperfect differentiation of the devel-
oping retina and can be subdivided into focal, multifocal,
geographic and total types. Focal and multifocal types
manifest as linear folds and ‘rosettes’ of tissue in the
inner (sensory) retinal layer whereas in geographic forms
there are larger areas of defective retinal development
that appear as large irregular or horseshoe-shaped areas
of mixed hyper- or hyporeflectivity in the central retina.
Total or generalized forms of retinal dysplasia have been
described as an inherited trait in several breeds, includ-
ing the Bedlington terrier [78], Sealyham terrier [79],
Labrador retriever [80] and the Yorkshire terrier [81]
and are associated with complete detachment of the ab-
normal neuroretina from the retinal pigment epithelium
that results in blindness of affected eyes. All forms of
retinal dysplasia are congenital and non-progressive. Ret-
inal dysplasia appears to be inherited as an autosomal
trait, at least in those breeds where sufficient numbers of
individuals have been studied to reliably estimate the
mode of inheritance [82-84]. The genetics of isolated or
non-syndromic forms of retinal dysplasia have not been
characterized at the molecular level in any breeds to
date and no mutations have been associated with this
condition.
Forms of syndromic retinal dysplasia have been reported

in the Labrador retriever [85-87] and the Samoyed [88].
Homozygous affected dogs had short-limbed dwarfism
and a range of ocular changes characterized by complete
retinal detachment and cataract whereas heterozygous
dogs had only focal or multifocal retinal lesions [85,86].
Breeding studies determined that these two disorders
are non-allelic [89] and they were termed DRD1 (dwarf-
ism with retinal dysplasia type 1, Labrador retriever)
and DRD2 (Samoyed), respectively (these conditions
have also previously been referred to as OSD1 and
OSD2 for oculoskeletal dysplasia). Mutations have re-
cently been associated with both disorders; a 1-base pair
insertional mutation in exon 1 of COL9A3 is associated
with DRD1 and a 1,267-bp deletion in the 5’ end of
COL9A2 co segregates with DRD2. Both mutations
affect the COL3 domain of their respective genes, the
expression of which are both reduced in affected
retinas [90].
Another complex congenital defect of the retina is collie

eye anomaly (CEA), although retinal involvement is sec-
ondary to the primary ocular defects associated with this
disorder. The primary phenotypic element of the disorder
is regional hypoplasia of the choroid, the highly vascular
layer underlying the retina. Associated retinal lesions,
known as colobomas are often detectable ophthalmosco-
pically, as are tortuous retinal vessels and multiple retinal
folds in a minority of cases [91]. CEA, which segregates in
several herding breeds with Collie ancestry, was mapped
to a large region of CFA37 that included over 40 genes
[92]; subsequently the fact that the disorder segregates in
multiple, closely related breeds was used to reduce the size
of the critical disease-associated region and pinpoint the
causal mutation to a 7.8 kb intronic deletion in the NHEJ1
gene, which spans a highly conserved binding domain to
which several developmentally important genes bind [91].
The precise mechanism by which the deletion causes CEA
has not however been established to date.

Hereditary cataract
The lens is the transparent, biconvex, avascular structure
in the anterior segment of the eye that is partly respon-
sible for the refraction of light to be focused on the ret-
ina. The lens consists of a nucleus, cortex and capsule
and is suspended by many dense zonular ligaments
which are attached to the capsule and connect between
the ciliary body and the lens equator. Transparency is a
crucial property of the lens which is achieved, in part, by
the absence of light-scattering organelles within the lens
fibres. New lens fibres are generated from the equatorial
cells of the lens epithelium, which elongate, synthesize
crystallin and finally lose their nuclei as they become
mature lens fibres. The crystallins, which make up over
90% of the proteins in the lens, are specially adapted to
contribute to the maintenance of transparency by form-
ing soluble, high-molecular weight aggregates that need
to stay in solution for the duration of an individual’s life.
Cataracts are simply defined as opacities of the lens

and can develop for a variety of reasons, including ad-
vanced age and the secondary effects of other diseases
such as diabetes or progressive retinal atrophy, and
trauma. Primary or hereditary cataracts (HC) are com-
mon among dogs and are a leading cause of blindness.
HC has been reported in as many as 97 different breeds
[93,94], with around 60 breeds being reported to be at
increased risk compared to mixed-breed dogs [95]. Her-
editary cataracts reported in different breeds vary with
respect to their anatomic position within the lens, their
age of onset and their progressive or stationary nature,
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although within a breed cataracts usually display marked
breed specificity. Despite the large number of breeds af-
fected by HC only a single gene, the transcription factor
HSF4, has been implicated in the development of cata-
racts in dogs to date. HSF4 belongs to a family of heat
shock transcription factors that regulate the expression
of heat shock proteins in response to different stresses,
such as oxidants, heavy metals, elevated temperatures
and bacterial and viral infections [96]. Different muta-
tions in HSF4 have been reported to cause both human
autosomal dominant and recessive cataracts [97-99] and
studies in mice have shown HSF4 is required for normal
fibre cell differentiation during lens development [100,101].
Disruption of the gene leads to the development of cata-
racts via multiple pathways, including the down-regulation
or loss of post-translational modification of different crys-
tallin proteins [102]. A single recessive nucleotide insertion
in exon 10 of the gene (CFA5 g.85286582_85286583insC),
that causes a frameshift and introduces a premature stop
codon, is responsible for an early onset, bilaterally sym-
metrical and progressive form of HC in the Staffordshire
bull terrier [103]. This cataract starts to develop from a
few months of age and invariably progresses to total cata-
ract within 2–3 years if left untreated [104]. The mutation
is shared by the Boston terrier, in which it causes the clin-
ically identical early-onset hereditary cataract (EHC), one
of two genetically distinct forms of cataract known to
affect this breed [104,105]. The mutation associated with
the clinically more variable, late-onset hereditary cataract
(LHC) in this breed has yet to be identified [106]. The
same mutation has also been identified in a small num-
ber of French bulldogs with a clinically identical cata-
ract (Mellersh, unpublished).
A single nucleotide deletion at the same position in

HSF4 (CFA5 g.85286582delC) has also been associated
with HC in the Australian Shepherd. The form of cataract
caused by the insertion identified in the Staffordshire bull
terrier and related breeds has a recessive and highly pene-
trant mode of inheritance, is early onset, highly progressive
and uniform. In contrast, the form of cataract observed in
the Australian Shepherd, caused by the deletion described
above, has a dominant, or co-dominant mode of inherit-
ance, is not completely penetrant and is typically associ-
ated with a posterior polar subcapsular cataract that also
has a variable age of onset. It is highly likely that other
mutations associated with the development of cataracts
are co-segregating in the Australian Shepherd popula-
tion because not all the dogs with bilateral posterior
polar subcapsular cataract carried a copy of the HSF4
deletion [107].
HSF4 has been excluded from involvement in the de-

velopment of HC in a long list of breeds, including the
Alaskan Malamute, American Cocker spaniel, Bichon
Havanais, Belgian Shepherd Tervueren and Groenendael,
Dachshunds, English Cocker spaniels, English Miniature
Terrier, Finnish Lapphund, Golden retriever, Griffon
Bruxellois, Kromfohrlander, Jack Russell terrier, Lapponian
Herder, Miniature Schnauzer, Miniature Pinscher, Nova
Scotia Duck Tolling Retriever, Rottweiler, Samoyed,
Schnauzer, and Tibetan Mastiff [103,107-111]. The paucity
of canine cataract mutations that have been reported in
the literature, compared to those associated with, for ex-
ample, inherited retinal degenerations in the dog, is testa-
ment to the fact that HC is probably a genetically complex
disorder in most breeds of dog and studies to date have
not included the analysis of sufficient numbers of cases
and controls to identify DNA variants associated with the
disease. A recessive mode of inheritance has been sug-
gested for congenital cataracts and microphthalmia in the
Miniature Schnauzer [112] as well as cataracts in the
Entlebucher mountain dog [113], the Bichon Frise [114]
and the American Cocker spaniel [115]. In contrast, an
autosomal dominant mode of inheritance with a high de-
gree of penetrance has been suggested for the pulverulent
(dust-like) form of cataract observed in the Norwegian
Buhund [116] and autosomal dominant with variable
penetrance has been suggested for inherited posterior
polar subcapsular cataracts in the Labrador and Golden
retriever [117], although current anecdotal evidence indi-
cates that in the Labrador cataracts could also be inherited
as an autosomal recessive trait. Evidence of inheritance
has been reported for a handful of other breeds, including
the Leonberger, Jack Russell terrier and Chow chow, al-
though the precise mode of inheritance has rarely been
identified [111,118,119].

Primary lens luxation
Primary lens luxation (PLL) is not a disease of the lens
itself, but rather an inherited deterioration of the lens
suspensory apparatus, the zonule, which is a system of
fibres that suspend the lens from the ciliary body, main-
taining it within the visual axis and in contact with the
anterior surface of the vitreous body. In dogs affected
with PLL ultrastructural abnormalities of the zonular fi-
bers are already evident at 20 months of age [120] long
before the lens luxation that typically occurs when the
dogs are 3 to 8 years old, as a result of degeneration
and breakdown of the zonules which cause the lens to
be displaced from its normal position within the eye
[121-124]. In the majority of cases the dislocated lens
will pass into the anterior chamber where its presence is
likely to cause acute glaucoma. The condition has been
recognized as a canine familial disorder for more than
100 years [125,126] and is encountered at high fre-
quency in several terrier breeds and in some other
breeds with probable terrier co-ancestry [121-124,127].
PLL is recessively inherited in the Tibetan terrier [127]
and inheritance has been suggested to be recessive in
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the Shar Pei and other Western terrier breeds in which
it has been studied [128]. A mutation in ADAMTS17
has been described as the cause of PLL in three breeds,
the Miniature Bull terrier, the Lancashire Heeler and the
Jack Russell terrier. The mutation is a G→A substitution
at c.1473 + 1, which destroys a splice donor recognition
site in intron 10 and causes exon skipping that results in
a frameshift and the introduction of a premature termin-
ation codon [129]. The great majority of PLL-affected
dogs are homozygous for the mutation, but a small mi-
nority are heterozygous, leading to speculation that car-
riers, of some breeds at least, might be at increased risk
of developing the condition compared to dogs that are
homozygous for the wildtype allele [129]. ADAMTS17 is
one of 29 known mammalian members of the ADAMTS
family of genes that encode secreted metalloproteases
that proteolytically modify extracellular structural pro-
teins. Mutations in a variety of ADAMTS genes have
been associated with a diverse set of human diseases
including Ehlers-Danlos syndrome [130] and Weill-
Marchesani syndrome [131]. The canine ADAMTS17
splice site mutation is shared by at least 17 different
breeds, many of which are terriers or terrier-type breeds,
but some of which have more diverse origins [132].
Some breeds that are known to be at increased risk of
PLL, such as the Border Collie, do not carry the same
ADAMTS17 mutation as the terrier breeds, indicating
their form of the disease must be genetically distinct
although clinically similar [132].

Other conditions
The diseases of the lens and retina described above rep-
resent the overwhelming majority of inherited eye condi-
tions in the dog for which causal mutations have been
identified. Many other ocular conditions have been re-
ported to be more common in certain breeds than
others, which is indicative that they have a genetic com-
ponent. However, a rigorous estimate of the mode of in-
heritance has been undertaken for relatively few of these
conditions. To list comprehensively all the eye condi-
tions that have been reported in dogs is outside the
scope of this review, so the remainder of conditions de-
scribed is restricted to those conditions for which an es-
timate of the mode of inheritance or the heritability has
been reported.

Glaucoma
Glaucoma is the term used to describe a group of condi-
tions that result in increased intraocular pressure, with
damage to the retinal ganglion cells and their axons,
leading to vision loss and blindness. Glaucoma is com-
monly divided into congenital, primary and secondary
types, depending on the aetiology of the condition. Con-
genital glaucoma is rare in the dog [133] and secondary
glaucoma, which is the most common form of the con-
dition observed in the dog, arises as result of antecedent
or concurrent ocular disease, so is not itself inherited, al-
though the primary, causal condition might be. Primary
glaucoma occurs in the absence of any other ocular dis-
ease, and, therefore, is presumed to have a genetic com-
ponent in most breeds. Primary glaucoma can occur in
the presence (angle closure glaucoma) or absence (open
angle glaucoma) of an abnormal, narrowed or closed
opening into the ciliary cleft, which prevents the efficient
drainage of aqueous humour from the anterior chamber
of the eye, via the iridocorneal angle through openings
between the pectinate fibres. Goniodysgenesis is the
most common cause of primary glaucoma in dogs, and
refers to the presence of abnormal, irregularly-shaped
or imperforate sheets of pectinate fibres. Glaucoma has
been reported to be more prevalent than average in
several breeds, including the Flat Coated Retriever,
American Cocker spaniel, the Bassett Hound, the Shar
Pei, the Norwegian Elkhound and the Boston terrier
[134-137]. A strong and significant correlation between
goniodysgenesis and glaucoma was reported in the Great
Dane, and the same study reported a high heritability for
goniodysgenesis, suggesting glaucoma may be heritable
in this breed [138]. A similarly significant association
has been reported between pectinate ligament dysplasia
and adult-onset primary glaucoma in the Flatcoated re-
triever, for which the heritability was estimated to be
approximately 0.7 [139,140]. To date no mutations have
been identified that are associated with angle closure glau-
coma in any breed of dog although the first glaucoma-
associated locus has recently been identified in Dandie
Dinmont Terriers [141].
Autosomal recessive, primary open-angle glaucoma

(POAG) has been very well characterized in the Beagle
[142-146] and a Gly661Arg variant in ADAMTS10 has
been associated with the condition in Beagles that devel-
oped elevated intraocular pressure from 8 to 16 months
of age, due to increased resistance to outflow of aqueous
humour despite normal appearing open iridocorneal
angles [147].
Persistent hyperplastic primary vitreous
Persistent hyperplastic primary vitreous (PHPV) is a
congenital, non-progressive condition which results from
the abnormal regression of the foetal hyaloid vascula-
ture. The condition is rare but is seen more commonly
in Staffordshire bull terriers in which pedigree analysis
supports a hereditary etiology for the condition but is
insufficient to determine the exact mode of inheritance,
[148,149]. PHPV and persistent hyperplastic tunica vas-
culosa lentis (PHTVL) has also been described in detail
in the Doberman [150].
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Conclusion
At the time of writing 29 different mutations have been
associated with inherited eye disease in the domestic
dog, and more are likely to have been identified by the
time this review goes to press. This number far exceeds
those associated with any other category of disease,
meaning that inherited eye diseases are arguably better
understood, at both the clinical and genetic level, than
any other category of canine disease. The dog has
already played an important role in emerging therapies
for inherited blindness in humans and similarities in dis-
ease phenotype and eye structure and function between
dog and man, together with the increasingly sophisti-
cated genetic tools that are available for the dog, mean
that the dog is likely to play an ever increasing role in
both our understanding of the normal functioning of the
eye and in our ability to treat inherited eye disorders.

Competing interests
The authors declare that they have no competing interests.

Acknowledgements
Funding from the Kennel Club Charitable Trust, PetPlan Charitable Trust,
Morris Animal Foundation, Waltham Foundation and American Kennel Club
Canine Health Foundation, is gratefully acknowledged, as well as support
from numerous Breed Clubs and individuals. I would also like to thank all the
owners and their dogs who have contributed to our studies over the years.

Received: 2 December 2013 Accepted: 6 March 2014
Published: 16 April 2014

References
1. Acland GM, Fletcher RT, Gentleman S, Chader GJ, Aguirre GD: Non-allelism

of three genes (rcd1, rcd2 and erd) for early-onset hereditary retinal
degeneration. Exp Eye Res 1989, 49(6):983–998.

2. Suber ML, Pittler SJ, Qin N, Wright GC, Holcombe V, Lee RH, Craft CM, Lolley
RN, Baehr W, Hurwitz RL: Irish setter dogs affected with rod/cone dysplasia
contain a nonsense mutation in the rod cGMP phosphodiesterase
beta-subunit gene. Proc Natl Acad Sci U S A 1993, 90(9):3968–3972.

3. Dekomien G, Runte M, Godde R, Epplen JT: Generalized progressive retinal
atrophy of Sloughi dogs is due to an 8-bp insertion in exon 21 of the
PDE6B gene. Cytogenet Cell Genet 2000, 90(3–4):261–267.

4. Petersen-Jones SM, Entz DD, Sargan DR: cGMP phosphodiesterase-alpha
mutation causes progressive retinal atrophy in the Cardigan Welsh corgi
dog. Invest Ophthalmol Vis Sci 1999, 40(8):1637–1644.

5. Tuntivanich N, Pittler SJ, Fischer AJ, Omar G, Kiupel M, Weber A, Yao S,
Steibel JP, Khan NW, Petersen-Jones SM: Characterization of a canine
model of autosomal recessive retinitis pigmentosa due to a PDE6A
mutation. Invest Ophthalmol Vis Sci 2009, 50(2):801–813.

6. Wolf ED, Vainisi SJ, Santos-Anderson R: Rod-cone dysplasia in the collie.
J Am Vet Med Assoc 1978, 173(10):1331–1333.

7. Kukekova AV, Goldstein O, Johnson JL, Richardson MA, Pearce-Kelling SE,
Swaroop A, Friedman JS, Aguirre GD, Acland GM: Canine RD3 mutation
establishes rod-cone dysplasia type 2 (rcd2) as ortholog of human and
murine rd3. Mamm Genome 2009, 20(2):109–123.

8. Friedman JS, Chang B, Kannabiran C, Chakarova C, Singh HP, Jalali S, Hawes
NL, Branham K, Othman M, Filippova E, Thompson DA, Webster AR,
Andreasson S, Jacobson SG, Bhattacharya SS, Heckenlively JR, Swaroop A:
Premature truncation of a novel protein, RD3, exhibiting subnuclear
localization is associated with retinal degeneration. Am J Hum Genet
2006, 79(6):1059–1070.

9. Acland GM, Aguirre GD: Retinal degenerations in the dog: IV. Early retinal
degeneration (erd) in Norwegian elkhounds. Exp Eye Res 1987,
44(4):491–521.

10. Acland GM, Ray K, Mellersh CS, Gu W, Langston AA, Rine J, Ostrander EA,
Aguirre GD: A novel retinal degeneration locus identified by linkage and
comparative mapping of canine early retinal degeneration. Genomics
1999, 59:134–142.

11. Goldstein O, Kukekova AV, Aguirre GD, Acland GM: Exonic SINE insertion in
STK38L causes canine early retinal degeneration (erd). Genomics 2010,
96(6):362–368.

12. Parshall C, Wyman M, Nitroy A, Acland G, Aguirre G: Photoreceptor
dysplasia: An inherited progressive retinal atrophy in miniature
schnauzer dogs. Prog Vet Comp Ophthalmol 1991, 1:187–203.

13. Zhang Q, Acland GM, Parshall CJ, Haskell J, Ray K, Aguirre GD:
Characterization of canine photoreceptor phosducin cDNA and
identification of a sequence variant in dogs with photoreceptor
dysplasia. Gene 1998, 215(2):231–239.

14. Type A-PRA Test. http://www.optigen.com/opt9_test_a_pra.html.
15. Winkler PA, Ekenstedt KJ, Occelli LM, Frattaroli AV, Bartoe JT, Venta PJ,

Petersen-Jones SM: A large animal model for CNGB1 autosomal recessive
retinitis pigmentosa. PLoS ONE 2013, 8(8):e72229.

16. Zhang Y, Molday LL, Molday RS, Sarfare SS, Woodruff ML, Fain GL, Kraft TW,
Pittler SJ: Knockout of GARPs and the beta-subunit of the rod cGMP-gated
channel disrupts disk morphogenesis and rod outer segment structural
integrity. J Cell Sci 2009, 122(Pt 8):1192–200.

17. Ahonen SJ, Arumilli M, Lohi H: A CNGB1 frameshift mutation in papillon
and phalene dogs with progressive retinal atrophy. PLoS ONE 2013,
8(8):e72122.

18. Zhang Q, Acland GM, Wu WX, Johnson JL, Pearce-Kelling S, Tulloch B,
Vervoort R, Wright AF, Aguirre GD: Different RPGR exon ORF15 mutations
in Canids provide insights into photoreceptor cell degeneration. Hum
Mol Genet 2002, 11(9):993–1003.

19. Aguirre GD, Acland GM: Variation in retinal degeneration phenotype
inherited at the prcd locus. Exp Eye Res 1988, 46(5):663–687.

20. Aguirre GD, Acland GM: Models, mutants and man; searching for unique
phenotypes and genes in the dog model of inherited retinal
degeneration. In The dog and its genome. Edited by Ostrander EA, Giger G,
Lindblad-Toh K. New York: Cold Spring Harbour Laboratory Press;
2006:291–325.

21. Acland GM, Ray K, Mellersh CS, Gu W, Langston AA, Rine J, Ostrander EA,
Aguirre GD: Linkage analysis and comparative mapping of canine
progressive rod-cone degeneration (prcd) establishes potential locus
homology with retinitis pigmentosa (RP17) in humans. Proc Natl Acad Sci
U S A 1998, 96(6):3048–3053.

22. Goldstein O, Zangerl B, Pearce-Kelling S, Sidjanin DJ, Kijas JW, Felix J, Acland
GM, Aguirre GD: Linkage disequilibrium mapping in domestic dog breeds
narrows the progressive rod-cone degeneration interval and identifies
ancestral disease-transmitting chromosome. Genomics 2006, 88(5):541–50.

23. Zangerl B, Goldstein O, Philp AR, Lindauer SJ, Pearce-Kelling SE, Mullins RF,
Graphodatsky AS, Ripoll D, Felix JS, Stone EM, Acland GM, Aguirre GD:
Identical mutation in a novel retinal gene causes progressive rod-cone
degeneration in dogs and retinitis pigmentosa in humans. Genomics
2006, 88(5):551–63.

24. Kijas JW, Cideciyan AV, Aleman TS, Pianta MJ, Pearce-Kelling SE, Miller BJ,
Jacobson SG, Aguirre GD, Acland GM: Naturally occurring rhodopsin
mutation in the dog causes retinal dysfunction and degeneration
mimicking human dominant retinitis pigmentosa. Proc Natl Acad Sci
U S A 2002, 99(9):6328–33.

25. Cideciyan AV, Jacobson SG, Aleman TS, Gu D, Pearce-Kelling SE, Sumaroka
A, Acland GM, Aguirre GD: In vivo dynamics of retinal injury and repair in
the rhodopsin mutant dog model of human retinitis pigmentosa. Proc
Natl Acad Sci U S A 2005, 102(14):5233–8.

26. Kijas JW, Miller BJ, Pearce-Kelling SE, Aguirre GD, Acland GM: Canine
models of ocular disease: outcross breedings define a dominant
disorder present in the english mastiff and bull mastiff dog breeds.
J Hered 2003, 94(1):27–30.

27. Lippmann T, Jonkisz A, Dobosz T, Petrasch-Parwez E, Epplen JT, Dekomien
G: Haplotype-defined linkage region for gPRA in Schapendoes dogs.
Mol Vis 2007, 13:174–80.

28. Dekomien G, Vollrath C, Petrasch-Parwez E, Boeve MH, Akkad DA, Gerding
WM, Epplen JT: Progressive retinal atrophy in Schapendoes dogs:
mutation of the newly identified CCDC66 gene. Neurogenetics. 2010,
11(2):163–174.

29. Acland GM, Blanton SH, Hershfield B, Aguire GD: XLPRA: a canine retinal
degeneration inherited as an X-linked trait. Am J Med Genet 1994,
52:27–33.



Mellersh Canine Genetics and Epidemiology 2014, 1:3 Page 12 of 14
http://www.cgejournal.org/content/1/1/3
30. Downs LM, Bell JS, Freeman J, Hartley C, Hayward LJ, Mellersh CS: Late-
onset progressive retinal atrophy in the Gordon and Irish Setter breeds
is associated with a frameshift mutation in C2orf71. Anim Genet 2013,
44(2):169–77.

31. Audo I, Lancelot ME, Mohand-Said S, Antonio A, Germain A, Sahel JA,
Bhattacharya SS, Zeitz C: Novel C2orf71 mutations account for
approximately 1% of cases in a large French arRP cohort. Hum Mutat
2011, 32(4):E2091–103.

32. Sergouniotis PI, Li Z, Mackay DS, Wright GA, Borman AD, Devery SR, Moore
AT, Webster AR: A survey of DNA variation of C2ORF71 in probands with
progressive autosomal recessive retinal degeneration and controls.
Invest Ophthalmol Vis Sci 2011, 52(3):1880–6.

33. Nishimura DY, Baye LM, Perveen R, Searby CC, Avila-Fernandez A, Pereiro I,
Ayuso C, Valverde D, Bishop PN, Manson FD, Urquhart J, Stone EM, Slusarski
DC, Black GC, Sheffield VC: Discovery and functional analysis of a retinitis
pigmentosa gene, C2ORF71. Am J Hum Genet 2010, 86(5):686–95.

34. Collin RW, Safieh C, Littink KW, Shalev SA, Garzozi HJ, Rizel L, Abbasi AH,
Cremers FP, den Hollander AI, Klevering BJ, Ben-Yosef T: Mutations in
C2ORF71 cause autosomal-recessive retinitis pigmentosa. Am J Hum
Genet 2010, 86(5):783–8.

35. Curtis R, Barnett KC: Progressive retinal atrophy in miniature longhaired
dachshund dogs. Br Vet J 1993, 149(1):71–85.

36. Turney C, Chong NH, Alexander RA, Hogg CR, Fleming L, Flack D, Barnett
KC, Bird AC, Holder GE, Luthert PJ: Pathological and electrophysiological
features of a canine cone-rod dystrophy in the miniature longhaired
dachshund. Invest Ophthalmol Vis Sci 2007, 48(9):4240–9.

37. Lheriteau E, Libeau L, Stieger K, Deschamps JY, Mendes-Madeira A, Provost
N, Lemoine F, Mellersh C, Ellinwood NM, Cherel Y, Moullier P, Rolling F: The
RPGRIP1-deficient dog, a promising canine model for gene therapy.
Mol Vis 2009, 15:349–61.

38. Mellersh CS, Boursnell ME, Pettitt L, Ryder EJ, Holmes NG, Grafham D,
Forman OP, Sampson J, Barnett KC, Blanton S, Binns MM, Vaudin M: Canine
RPGRIP1 mutation establishes cone-rod dystrophy in miniature
longhaired dachshunds as a homologue of human Leber congenital
amaurosis. Genomics 2006, 88(3):293–301.

39. Dryja TP, Adams SM, Grimsby JL, McGee TL, Hong DH, Li T, Andreasson S,
Berson EL: Null RPGRIP1 alleles in patients with Leber congenital
amaurosis. Am J Hum Genet 2001, 68(5):1295–8.

40. Booij JC, Florijn RJ, ten Brink JB, Loves W, Meire F, van Schooneveld MJ, de
Jong PT, Bergen AA: Identification of mutations in the AIPL1, CRB1,
GUCY2D, RPE65, and RPGRIP1 genes in patients with juvenile retinitis
pigmentosa. Journal of Medical Genetics 2005, 42(11):e67.

41. Hameed A, Abid A, Aziz A, Ismail M, Mehdi SQ, Khaliq S: Evidence of
RPGRIP1 gene mutations associated with recessive cone-rod dystrophy.
J Med Genet 2003, 40(8):616–9.

42. Zhao Y, Hong DH, Pawlyk B, Yue G, Adamian M, Grynberg M, Godzik A, Li T:
The retinitis pigmentosa GTPase regulator (RPGR)- interacting protein:
subserving RPGR function and participating in disk morphogenesis. Proc
Natl Acad Sci U S A 2003, 100(7):3965–70.

43. Roepman R, Bernoud-Hubac N, Schick DE, Maugeri A, Berger W, Ropers HH,
Cremers FP, Ferreira PA: The retinitis pigmentosa GTPase regulator (RPGR)
interacts with novel transport-like proteins in the outer segments of rod
photoreceptors. Hum Mol Genet 2000, 9(14):2095–105.

44. Hong DH, Yue G, Adamian M, Li T: Retinitis pigmentosa GTPase regulator
(RPGRr)-interacting protein is stably associated with the photoreceptor
ciliary axoneme and anchors RPGR to the connecting cilium. J Biol Chem
2001, 276(15):12091–9.

45. Ropstad EO, Bjerkas E, Narfstrom K: Clinical findings in early onset
cone-rod dystrophy in the Standard Wire-haired Dachshund.
Vet Ophthalmol 2007, 10(2):69–75.

46. Ropstad EO, Bjerkas E, Narfstrom K: Electroretinographic findings in the
Standard Wire Haired Dachshund with inherited early onset cone-rod
dystrophy. Doc Ophthalmol 2007, 114(1):27–36.

47. Wiik AC, Ropstad EO, Bjerkas E, Lingaas F: A study of candidate genes for
day blindness in the standard wire haired dachshund. BMC Vet Res 2008,
4:23.

48. Wiik AC, Thoresen SI, Wade C, Lindblad-Toh K, Lingaas F: A population
study of a mutation allele associated with cone-rod dystrophy in the
standard wire-haired dachshund. Anim Genet 2009, 40(4):572–4.

49. Wiik AC, Wade C, Biagi T, Ropstad EO, Bjerkas E, Lindblad-Toh K, Lingaas F:
A deletion in nephronophthisis 4 (NPHP4) is associated with recessive
cone-rod dystrophy in standard wire-haired dachshund. Genome Res
2008, 18(9):1415–21.

50. Miyadera K, Kato K, Aguirre-Hernandez J, Tokuriki T, Morimoto K, Busse C,
Barnett K, Holmes N, Ogawa H, Sasaki N, Mellersh CS, Sargan DR:
Phenotypic variation and genotype-phenotype discordance in canine
cone-rod dystrophy with an RPGRIP1 mutation. Mol Vis 2009,
15:2287–305.

51. Busse C, Barnett KC, Mellersh CS, Adams VJ: Ophthalmic and cone derived
electrodiagnostic findings in outbred Miniature Long-haired Dachshunds
homozygous for a RPGRIP1 mutation. Vet Ophthalmol 2011, 14(3):146–52.

52. Miyadera K, Kato K, Boursnell M, Mellersh CS, Sargan DR: Genome-wide
association study in RPGRIP1 (-/-) dogs identifies a modifier locus that
determines the onset of retinal degeneration. Mamm Genome 2012,
23(1–2):212–23.

53. Goldstein O, Mezey JG, Boyko AR, Gao C, Wang W, Bustamante CD, Anguish
LJ, Jordan JA, Pearce-Kelling SE, Aguirre GD, Acland GM: An ADAM9
mutation in canine cone-rod dystrophy 3 establishes homology with
human cone-rod dystrophy 9. Mol Vis 2010, 16:1549–69.

54. Kropatsch R, Petrasch-Parwez E, Seelow D, Schlichting A, Gerding WM,
Akkad DA, Epplen JT, Dekomien G: Generalized progressive retinal
atrophy in the Irish Glen of Imaal Terrier is associated with a deletion in
the ADAM9 gene. Mol Cell Probes 2010, 24(6):357–63.

55. Parry DA, Toomes C, Bida L, Danciger M, Towns KV, McKibbin M, Jacobson
SG, Logan CV, Ali M, Bond J, Chance R, Swendeman S, Daniele LL, Springell
K, Adams M, Johnson CA, Booth AP, Jafri H, Rashid Y, Banin E, Strom TM,
Farber DB, Sharon D, Blobel CP, Pugh EN Jr, Pierce EA, Inglehearn CF: Loss
of the metalloprotease ADAM9 leads to cone-rod dystrophy in humans
and retinal degeneration in mice. Am J Hum Genet 2009, 84(5):683–91.

56. Narfstrom K, Wrigstad A, Nilsson SE: The Briard dog: a new animal model
of congenital stationary night blindness. Br J Ophthalmol 1989,
73(9):750–6.

57. Wrigstad A, Narfstrom K, Nilsson SE: Slowly progressive changes of the
retina and retinal pigment epithelium in Briard dogs with hereditary
retinal dystrophy. A morphological study. Doc Ophthalmol 1994,
87(4):337–54.

58. Aguirre GD, Baldwin V, Pearce-Kelling S, Narfstrom K, Ray K, Acland GM:
Congenital stationary night blindness in the dog: common mutation in
the RPE65 gene indicates founder effect. Mol Vis 1998, 4:23.

59. Veske A, Nilsson SE, Narfstrom K, Gal A: Retinal dystrophy of Swedish
briard/briard-beagle dogs is due to a 4-bp deletion in RPE65. Genomics
1999, 57(1):57–61.

60. Bok D: The role of RPE65 in inherited retinal diseases. Retina 2005,
25(8 Suppl):S61–S62.

61. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV,
Pearce-Kelling SE, Anand V, Zeng Y, Maguire AM, Jacobson SG, Hauswirth
WW, Bennett J: Gene therapy restores vision in a canine model of
childhood blindness. Nat Genet 2001, 28(1):92–5.

62. Le Meur G, Stieger K, Smith AJ, Weber M, Deschamps JY, Nivard D,
Mendes-Madeira A, Provost N, Pereon Y, Cherel Y, Ali RR, Hamel C, Moullier
P, Rolling F: Restoration of vision in RPE65-deficient Briard dogs using an
AAV serotype 4 vector that specifically targets the retinal pigmented
epithelium. Gene Ther 2007, 14(4):292–303.

63. Bainbridge JW, Smith AJ, Barker SS, Robbie S, Henderson R, Balaggan K,
Viswanathan A, Holder GE, Stockman A, Tyler N, Petersen-Jones S,
Bhattacharya SS, Thrasher AJ, Fitzke FW, Carter BJ, Rubin GS, Moore AT,
Ali RR: Effect of gene therapy on visual function in Leber's congenital
amaurosis. N Engl J Med 2008, 358(21):2231–9.

64. Hauswirth WW, Aleman TS, Kaushal S, Cideciyan AV, Schwartz SB, Wang L,
Conlon TJ, Boye SL, Flotte TR, Byrne BJ, Jacobson SG: Treatment of leber
congenital amaurosis due to RPE65 mutations by ocular subretinal
injection of adeno-associated virus gene vector: short-term results of a
phase I trial. Hum Gene Ther 2008, 19(10):979–90.

65. Maguire AM, Simonelli F, Pierce EA, Pugh EN Jr, Mingozzi F, Bennicelli J,
Banfi S, Marshall KA, Testa F, Surace EM, Rossi S, Lyubarsky A, Arruda VR,
Konkle B, Stone E, Sun J, Jacobs J, Dell'Osso L, Hertle R, Ma JX, Redmond
TM, Zhu X, Hauck B, Zelenaia O, Shindler KS, Maguire MG, Wright JF, Volpe
NJ, McDonnell JW, Auricchio A, et al: Safety and efficacy of gene transfer
for Leber's congenital amaurosis. N Engl J Med 2008, 358(21):2240–8.

66. Rubin LF, Bourns TK, Lord LH: Hemeralopia in dogs: heredity of
hemeralopia in Alaskan Malamutes. American Journal of Veterinary
Research 1967, 28(123):355–7.



Mellersh Canine Genetics and Epidemiology 2014, 1:3 Page 13 of 14
http://www.cgejournal.org/content/1/1/3
67. Aguirre GD, Rubin LF: The electroretinogram in dogs with inherited cone
degeneration. Investig Ophthalmol 1975, 14(11):840–7.

68. Seddon JM, Hampson EC, Smith RI, Hughes IP: Genetic heterogeneity of
day blindness in Alaskan Malamutes. Anim Genet 2006, 37(4):407–10.

69. Sidjanin DJ, Lowe JK, McElwee JL, Milne BS, Phippen TM, Sargan DR, Aguirre
GD, Acland GM, Ostrander EA: Canine CNGB3 mutations establish cone
degeneration as orthologous to the human achromatopsia locus
ACHM3. Hum Mol Genet 2002, 11(16):1823–33.

70. Kohl S, Baumann B, Broghammer M, Jagle H, Sieving P, Kellner U, Spegal R,
Anastasi M, Zrenner E, Sharpe LT, Wissinger B: Mutations in the CNGB3
gene encoding the beta-subunit of the cone photoreceptor cGMP-gated
channel are responsible for achromatopsia (ACHM3) linked to
chromosome 8q21. Hum Mol Genet 2000, 9(14):2107–16.

71. Sundin OH, Yang JM, Li Y, Zhu D, Hurd JN, Mitchell TN, Silva ED, Maumenee
IH: Genetic basis of total colourblindness among the Pingelapese
islanders. Nat Genet 2000, 25(3):289–293.

72. Komaromy AM, Alexander JJ, Rowlan JS, Garcia MM, Chiodo VA, Kaya A,
Tanaka JC, Acland GM, Hauswirth WW, Aguirre GD: Gene therapy rescues
cone function in congenital achromatopsia. Hum Mol Genet 2010,
19(13):2581–93.

73. Grahn BH, Philibert H, Cullen CL, Houston DM, Semple HA, Schmutz SM:
Multifocal retinopathy of Great Pyrenees dogs. Vet Ophthalmol 1998,
1(4):211–221.

74. Guziewicz KE, Zangerl B, Lindauer SJ, Mullins RF, Sandmeyer LS, Grahn BH,
Stone EM, Acland GM, Aguirre GD: Bestrophin gene mutations cause
canine multifocal retinopathy: a novel animal model for best disease.
Invest Ophthalmol Vis Sci 2007, 48(5):1959–67.

75. Zangerl B, Wickstrom K, Slavik J, Lindauer SJ, Ahonen S, Schelling C, Lohi H,
Guziewicz KE, Aguirre GD: Assessment of canine BEST1 variations
identifies new mutations and establishes an independent
bestrophinopathy model (cmr3). Mol Vis 2010, 16:2791–804.

76. Lorenz B, Preising MN: Best's disease. Overview of pathology and its
causes. Ophthalmologe 2005, 102(2):111–5.

77. Xiao Q, Hartzell HC, Yu K: Bestrophins and retinopathies. Pflugers Archiv.
Eur J Physiol 2010, 460(2):559–69.

78. Rubin LF: Hereditary retinal dysplasia in Bedlington terriers. J Am
Veterinary Med Assoc 1968, 19:260–262.

79. Ashton N, Barnett KC, Sachs DD: Retinal dysplasia in the Sealyham terrier.
J Pathology Bacteriol 1968, 96(2):269–72.

80. Barnett KC, Bjorck GR, Kock E: Hereditary retinal dysplasia in the labrador
retriever in England and Sweden. J Animal Pract 1970, 10:755–759.

81. Stades FC: Hereditary retinal dysplasia (RD) in a family of Yorkshire
terriers. Tijdschr Diergeneeskd 1978, 103(20):1087–90.

82. Crispin SM, Long SE, Wheeler CA: Incidence and ocular manifestations of
multifocal retinal dysplasia in the golden retriever in the uk. Vet Rec 1999,
145:669–72.

83. Long SE, Crispin SM: Inheritance of multifocal retinal dysplasia in the
golden retriever in the UK. Vet Rec 1999, 145(24):702–4.

84. MacMillan AD, Lipton DE: Heritability of multifocal retinal dysplasia in
American Cocker Spaniels. J Am Veterinary Med Assoc 1978, 172(5):568–72.

85. Carrig CB, MacMillan A, Brundage S, Pool RR, Morgan JP: Retinal dysplasia
associated with skeletal abnormalities in Labrador Retrievers. J Am
Veterinary Med Assoc 1977, 170(1):49–57.

86. Carrig CB, Sponenberg DP, Schmidt GM, Tvedten HW: Inheritance of
associated ocular and skeletal dysplasia in Labrador retrievers. J Am
Veterinary Med Assoc 1988, 193(10):1269–72.

87. Nelson DL, Macmillan AD: Multifocal retinal dysplasia in field trial labrador
retrievers. J Am Animal Hospital Assoc 1983, 19:388–392.

88. Meyers VN, Jezyk PF, Aguirre GD, Patterson DF: Short-limbed dwarfism and
ocular defects in the Samoyed dog. J Am Veterinary Med Assoc 1983,
183(9):975–9.

89. Acland GM, Aguirre GD: Oculoskeletal dysplasia in samoyed and Labrador
retriever dogs: 2 nonallelic disorders akin to Stickler-like syndromes
affecting humans. In 2nd International DOGMAP meeting. Cambridge, UK;
1995.

90. Goldstein O, Guyon R, Kukekova A, Kuznetsova TN, Pearce-Kelling SE,
Johnson J, Aguirre GD, Acland GM: COL9A2 and COL9A3 mutations in
canine autosomal recessive oculoskeletal dysplasia. Mamm Genome 2010,
21(7–8):398–408.

91. Parker HG, Kukekova AV, Akey DT, Goldstein O, Kirkness EF, Baysac KC,
Mosher DS, Aguirre GD, Acland GM, Ostrander EA: Breed relationships
facilitate fine-mapping studies: a 7.8-kb deletion cosegregates with
Collie eye anomaly across multiple dog breeds. Genome Res 2007,
17(11):1562–71.

92. Lowe JK, Kukekova AV, Kirkness EF, Langlois MC, Aguirre GD, Acland GM,
Ostrander EA: Linkage mapping of the primary disease locus for collie
eye anomaly. Genomics 2003, 82(1):86–95.

93. Davidson MG, Nelms SR: Diseases of the canine lens and cataract
formation. In In Veterinary Ophthalmology. Edited by Gelatt K. 9600
Garsington Road, Oxford, OX4 2DQ, UK: Blackwell Publishing Ltd;
2007:859–887.

94. Rubin LF: Inherited Eye Diseases in Purebred Dogs. Baltimore: Williams &
Wilkins; 1989:363.

95. Gelatt KN, Mackay EO: Prevalence of primary breed-related cataracts in
the dog in North America. Vet Ophthalmol 2005, 8(2):101–11.

96. Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K: HSF4, a
new member of the human heat shock factor family which lacks
properties of a transcriptional activator. Mol Cell Biol 1997, 17(1):469–81.

97. Bu L, Jin Y, Shi Y, Chu R, Ban A, Eiberg H, Andres L, Jiang H, Zheng G, Qian
M, Cui B, Xia Y, Liu J, Hu L, Zhao G, Hayden MR, Kong X: Mutant DNA-
binding domain of HSF4 is associated with autosomal dominant lamellar
and Marner cataract. Nat Genet 2002, 31(3):276–8.

98. Forshew T, Johnson CA, Khaliq S, Pasha S, Willis C, Abbasi R, Tee L, Smith U,
Trembath RC, Mehdi SQ, Moore AT, Maher ER: Locus heterogeneity in
autosomal recessive congenital cataracts: linkage to 9q and germline
HSF4 mutations. Human Genetics 2005, 117(5):452–9.

99. Smaoui N, Beltaief O, BenHamed S, M'Rad R, Maazoul F, Ouertani A,
Chaabouni H, Hejtmancik JF: A homozygous splice mutation in the HSF4
gene is associated with an autosomal recessive congenital cataract.
Investigative Ophthalmol Vis Sci 2004, 45(8):2716–21.

100. Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S, Kato K, Yonemura
S, Inouye S, Nakai A: HSF4 is required for normal cell growth and
differentiation during mouse lens development. EMBO J 2004, 23
(21):4297–306.

101. Min JN, Zhang Y, Moskophidis D, Mivechi NF: Unique contribution of heat
shock transcription factor 4 in ocular lens development and fiber cell
differentiation. Genesis 2004, 40(4):205–17.

102. Shi X, Cui B, Wang Z, Weng L, Xu Z, Ma J, Xu G, Kong X, Hu L: Removal of
Hsf4 leads to cataract development in mice through down-regulation of
gamma S-crystallin and Bfsp expression. BMC Mol Biol 2009, 10:10.

103. Mellersh CS, Pettitt L, Forman OP, Vaudin M, Barnett KC: Identification of
mutations in HSF4 in dogs of three different breeds with hereditary
cataracts. Veterinary Ophthalmol 2006, 9(5):369–78.

104. Barnett KC: Hereditary cataract in the dog. J Small Animal Pract 1978,
19(2):109–20.

105. Curtis R: Late-onset cataract in the Boston terrier. Vet Rec 1984,
115(22):577–8.

106. Mellersh CS, Graves KT, McLaughlin B, Ennis RB, Pettitt L, Vaudin M, Barnett
KC: Mutation in HSF4 Associated with Early but Not Late-Onset
Hereditary Cataract in the Boston Terrier. J Hered 2007, 98(5):531–3.

107. Mellersh CS, McLaughlin B, Ahonen S, Pettitt L, Lohi H, Barnett KC: Mutation
in HSF4 is associated with hereditary cataract in the Australian
Shepherd. Vet Ophthalmol 2009, 12(6):372–8.

108. Muller C, Distl O: Scanning 17 candidate genes for association with
primary cataracts in the wire-haired Dachshund. Veterinary J 2009,
182(2):342–5.

109. Muller C, Wohlke A, Distl O: Evaluation of canine heat shock transcription
factor 4 (HSF4) as a candidate gene for primary cataracts in the
Dachshund and the Entlebucher Mountain dog. Veterinary Ophthalmol
2008, 11(1):34–7.

110. Engelhardt A, Wohlke A, Distl O: Evaluation of canine heat-shock
transcription factor 4 as a candidate for primary cataracts in English
Cocker Spaniels and wire-haired Kromfohrlanders. J Anim Breed Genet
2007, 124(4):242–5.

111. Oberbauer AM, Hollingsworth SR, Belanger JM, Regan KR, Famula TR:
Inheritance of cataracts and primary lens luxation in Jack Russell Terriers.
Am J Veterinary Res 2008, 69(2):222–7.

112. Gelatt KN, Samuelson DA, Bauer JE, Das ND, Wolf ED, Barrie KP, Andresen
TL: Inheritance of congenital cataracts and microphthalmia in the
Miniature Schnauzer. Am J Veterinary Res 1983, 44(6):1130–2.

113. Spiess BM: Inherited eye diseases in the Entlebucher mountain dog.
Schweiz Arch Tierheilkd 1994, 136(3):105–10.



Mellersh Canine Genetics and Epidemiology 2014, 1:3 Page 14 of 14
http://www.cgejournal.org/content/1/1/3
114. Wallace MR, MacKay EO, Gelatt KN, Andrew SE: Inheritance of cataract in
the Bichon Frise. Veterinary Ophthalmol 2005, 8(3):203–5.

115. Yakely WL: A study of heritability of cataracts in the American Cocker
Spaniel. JAVMA 1978, 172(7):814–817.

116. Bjerkas E, Haaland MB: Pulverulent nuclear cataract in the Norwegian
buhund. J Small Animal Pract 1995, 36(11):471–4.

117. Curtis R, Barnett KC: A survey of cataracts in the golden and labrador
retrievers. J Small Animal Pract 1989, 30:277–286.

118. Collins BK, Collier LL, Johnson GS, Shibuya H, Moore CP, da Silva Curiel JM:
Familial cataracts and concurrent ocular anomalies in chow chows. J Am
Veterinary Med Assoc 1992, 200(10):1485–91.

119. Heinrich CL, Lakhani KH, Featherstone HJ, Barnett KC: Cataract in the UK
Leonberger population. Veterinary Ophthalmol 2006, 9(5):350–6.

120. Curtis R: Aetiopathological aspects of inherited lens dislocation in the
Tibetan Terrier. J Comparative Pathol 1983, 93(1):151–63.

121. Curtis R: Lens luxation in the dog and cat. Vet Clin North Am Small Anim
Pract 1990, 20(3):755–73.

122. Curtis R, Barnett KC: Primary lens luxation in the dog. J Small Anim Pract
1980, 21(12):657–68.

123. Curtis R, Barnett KC, Lewis SJ: Clinical and pathological observations
concerning the aetiology of primary lens luxation in the dog. Vet Rec
1983, 112(11):238–46.

124. Morris RA, Dubielzig RR: Light-microscopy evaluation of zonular fiber
morphology in dogs with glaucoma: secondary to lens displacement.
Veterinary Ophthalmol 2005, 8(2):81–4.

125. Gray H: The diseases of the eye in domesticated animnals. Vet. Rec. 1909,
21:678.

126. Gray H: Some medical and surgical conditions in the dog and cat. Vet Rec
1932, 12:1–10.

127. Willis MB, Curtis R, Barnett KC, Tempest WM: Genetic aspects of lens
luxation in the Tibetan terrier. Vet Rec 1979, 104(18):409–12.

128. Sargan DR, Withers D, Pettitt L, Squire M, Gould DJ, Mellersh CS: Mapping
the mutation causing lens luxation in several terrier breeds. J Hered 2007,
98(5):534–8.

129. Farias FH, Johnson GS, Taylor JF, Giuliano E, Katz ML, Sanders DN, Schnabel
RD, McKay SD, Khan S, Gharahkhani P, O'Leary CA, Pettitt L, Forman OP,
Boursnell M, McLaughlin B, Ahonen S, Lohi H, Hernandez-Merino E, Gould
DJ, Sargan D, Mellersh CS: An ADAMTS17 Splice Donor Site Mutation in
Dogs with Primary Lens Luxation. Investigative Ophthalmol Visual Sci 2010,
51:4716–4721.

130. Colige A, Sieron AL, Li SW, Schwarze U, Petty E, Wertelecki W, Wilcox W,
Krakow D, Cohn DH, Reardon W, Byers PH, Lapiere CM, Prockop DJ,
Nusgens BV: Human Ehlers-Danlos syndrome type VII C and bovine
dermatosparaxis are caused by mutations in the procollagen I N-
proteinase gene. Am J Human Genetics 1999, 65(2):308–17.

131. Dagoneau N, Benoist-Lasselin C, Huber C, Faivre L, Megarbane A, Alswaid A,
Dollfus H, Alembik Y, Munnich A, Legeai-Mallet L, Cormier-Daire V:
ADAMTS10 mutations in autosomal recessive Weill-Marchesani
syndrome. Am J Human Genetics 2004, 75(5):801–6.

132. Gould D, Pettitt L, McLaughlin B, Holmes N, Forman O, Thomas A, Ahonen
S, Lohi H, O'Leary C, Sargan D, Mellersh C: ADAMTS17 mutation associated
with primary lens luxation is widespread among breeds. Veterinary
Ophthalmol 2011, 14:1–7.

133. Barnett KC, Sansom J, Heinrich C: Glaucoma. In Canine Ophthalmology.
An Atlas and Text. Edited by Gregory J. Harcourt Publishers Limited;
2002:99–107.

134. Bjerkas E, Ekesten B, Farstad W: Pectinate ligament dysplasia and
narrowing of the iridocorneal angle associated with glaucoma in the
English Springer Spaniel. Veterinary Ophthalmol 2002, 5(1):49–54.

135. Gelatt KN, MacKay EO: Prevalence of the breed-related glaucomas in
pure-bred dogs in North America. Veterinary Ophthalmol 2004, 7(2):97–111.

136. Oshima Y, Bjerkas E, Peiffer RL Jr: Ocular histopathologic observations in
Norwegian Elkhounds with primary open-angle, closed-cleft glaucoma.
Veterinary Ophthalmol 2004, 7(3):185–8.

137. Wyman M, Ketring K: Congenital glaucoma in the basset hound: a
biologic model. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol
1976, 81(4 Pt 1):OP645–52.

138. Wood JL, Lakhani KH, Mason IK, Barnett KC: Relationship of the degree of
goniodysgenesis and other ocular measurements to glaucoma in Great
Danes. Am J Veterinary Res 2001, 62(9):1493–9.
139. Wood JL, Lakhani KH, Read RA: Pectinate ligament dysplasia and
glaucoma in flat coated retrievers. II. assessment of prevalence and
heritability. Veterinary Ophthalmol 1998, 1(2–3):91–99.

140. Read RA, Wood JL, Lakhani KH: Pectinate ligament dysplasia (PLD) and
glaucoma in Flat Coated Retrievers. I. Objectives, technique and results
of a PLD survey. Veterinary Ophthalmol 1998, 1(2–3):85–90.

141. Ahonen SJ, Pietila E, Mellersh CS, Tiira K, Hansen L, Johnson GS, Lohi H:
Genome-wide association study identifies a novel canine glaucoma
locus. PLoS ONE 2013, 8(8):e70903.

142. Gelatt KN, Gum GG: Inheritance of primary glaucoma in the beagle.
Am J Veterinary Res 1981, 42(10):1691–3.

143. Gelatt KN, Gum GG, Gwin RM, Bromberg NM, Merideth RE, Samuelson DA:
Primary open angle glaucoma: inherited primary open angle glaucoma
in the beagle. Am J Pathol 1981, 102(2):292–5.

144. Gelatt KN, Gwin RM, Peiffer RL Jr, Gum GG: Tonography in the normal and
glaucomatous beagle. Am J Veterinary Res 1977, 38(4):515–20.

145. Gelatt KN, Peiffer RL Jr, Gwin RM, Gum GG, Williams LW: Clinical
manifestations of inherited glaucoma in the beagle. Invest Ophthalmol
Vis Sci 1977, 16(12):1135–42.

146. Mackay EO, Kallberg ME, Gelatt KN: Aqueous humor myocilin protein
levels in normal, genetic carriers, and glaucoma Beagles. Veterinary
Ophthalmol 2008, 11(3):177–85.

147. Kuchtey J, Olson LM, Rinkoski T, Mackay EO, Iverson TM, Gelatt KN, Haines
JL, Kuchtey RW: Mapping of the disease locus and identification of
ADAMTS10 as a candidate gene in a canine model of primary open
angle glaucoma. PLoS Genet 2011, 7(2):e1001306.

148. Curtis R, Barnett KC, Leon A: Persistent hyperplastic primary vitreous in
the Staffordshire bull terrier. Vet Rec 1984, 115(15):385.

149. Leon A, Curtis R, Barnett KC: Hereditary Persistent Hyperplastic Primary
Vitreous in the Staffordshire Bull Terrier. J Am Animal Hospital Assoc 1986,
22:765–774.

150. Stades FC, Boeve MH, van den Brom WE, van der Linde-Sipman JS: The
incidence of PHTVL/PHPV in Doberman and the results of breeding
rules. Vet Q 1991, 13(1):24–9.

doi:10.1186/2052-6687-1-3
Cite this article as: Mellersh: The genetics of eye disorders in the dog.
Canine Genetics and Epidemiology 2014 1:3.
Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit


	Abstract
	Lay summary
	Introduction
	Review
	Diseases of the retina
	Degenerative retinal disorders
	Progressive retinal disorders
	Progressive retinal atrophy
	Cone-rod degenerations
	Stationary retinal disorders
	Developmental diseases

	Hereditary cataract
	Primary lens luxation
	Other conditions
	Glaucoma
	Persistent hyperplastic primary vitreous


	Conclusion
	Competing interests
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <FEFF004d0069006e0151007300e9006700690020006e0079006f006d00610074006f006b0020006b00e90073007a00ed007400e9007300e900680065007a002000610073007a00740061006c00690020006e0079006f006d00740061007400f3006b006f006e002000e9007300200070007200f300620061006e0079006f006d00f3006b006f006e00200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002c00200068006f007a007a006f006e0020006c00e9007400720065002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00610074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002c00200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002000e9007300200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c00200020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b007500720069006500200073006b00690072007400690020006b006f006b0079006200690161006b0061006900200073007000610075007300640069006e007400690020007300740061006c0069006e0069006100690073002000690072002000620061006e00640079006d006f00200073007000610075007300640069006e007400750076006100690073002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043404400443043a04430020043d04300020043d0430044104420456043b044c043d043804450020043f04400438043d044204350440043004450020044204300020043f04400438044104420440043e044f044500200434043b044f0020043e044204400438043c0430043d043d044f0020043f0440043e0431043d0438044500200437043e04310440043004360435043d044c002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


